MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE CAMPOS.
MECÃNICA GRACELI GERAL - QTDRC.
equação Graceli dimensional relativista tensorial quântica de campos G* = = [ / IFF ] G* = / G / .= / G = [DR] = .= + + G* = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
| Teoria | Interação | mediador | Magnitude relativa | Comportamento | Faixa |
|---|---|---|---|---|---|
| Cromodinâmica | Força nuclear forte | Glúon | 1041 | 1/r7 | 1,4 × 10-15 m |
| Eletrodinâmica | Força eletromagnética | Fóton | 1039 | 1/r2 | infinito |
| Flavordinâmica | Força nuclear fraca | Bósons W e Z | 1029 | 1/r5 até 1/r7 | 10-18 m |
| Geometrodinâmica | Força gravitacional | gráviton | 10 | 1/r2 | infinito |
G* = OPERADOR DE DIMENSÕES DE GRACELI.
DIMENSÕES DE GRACELI SÃO TODA FORMA DE TENSORES, ESTRUTURAS, ENERGIAS, ACOPLAMENTOS, , INTERAÇÕES E CAMPOS, DISTRIBUIÇÕES ELETRÔNICAS, ESTADOS FÍSICOS, ESTADOS QUÂNTICOS, ESTADOS FÍSICOS DE ENERGIAS DE GRACELI, E OUTROS.
/
/ G* = = [ ] ω , , .=
MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE CAMPOS. EM :
Supercondutores ferromagnéticos são materiais que apresentam, de modo simultâneo e intrínseco, ferromagnetismo e supercondutividade. Entre eles, podem-se citar UGe2,[1] URhGe,[2] e UCoGe.[3] Evidência de supercondutividade ferromagnética também foi relatada para ZrZn2 em 2001, mas relatórios posteriores[4] questionam tais descobertas. Esses materiais exibem supercondutividade na proximidade de um ponto crítico quântico magnético.
A natureza do estado supercondutor em supercondutores ferromagnéticos está atualmente em debate. As primeiras investigações[5] estudaram a coexistência de supercondutividade de onda s convencional com ferromagnetismo itinerante. No entanto, o cenário de emparelhamento de spin tripleto logo ganhou vantagem.[6][7] Um modelo de campo médio para coexistência de emparelhamento de spin tripleto e ferromagnetismo foi desenvolvido em 2005.[8][9]
Esses modelos consideram a coexistência uniforme de ferromagnetismo e supercondutividade, ou seja, os mesmos elétrons sendo ferromagnéticos e supercondutores ao mesmo tempo. Os supercondutores com ordem magnética espiral ou helicoidal configuram outro cenário onde há uma interação entre as ordens magnética e supercondutora no mesmo materia. Exemplos deles incluem ErRh4B4 e HoMo6S8. Nesses casos, os parâmetros de ordem supercondutora e magnética se entrelaçam em um padrão espacialmente modulado, o que permite sua existência mútua, apesar de não ser mais uniforme. Mesmo o par spin singleto pode coexistir com o ferromagnetismo dessa maneira.
Teoria[editar | editar código-fonte]
Em supercondutores convencionais, os elétrons que constituem o par de Cooper têm spin oposto, formando os chamados pares de spin singletos. No entanto, outros tipos de emparelhamento também são permitidos pelo princípio de exclusão de Pauli. Na presença de um campo magnético, os spins tendem a se alinhar com o campo, o que significa que um campo magnético é prejudicial para a existência de pares de Cooper no estado singleto. Um hamiltoniano de campo médio viável para modelar ferromagnetismo itinerante coexistindo com um estado tripleto de de spin não unitário pode, após a diagonalização, ser escrito como:[8][9]
, / G* = = [ ] ω , , .=
, / G* = = [ ] ω , , .=
. / G* = = [ ] ω , , .=
O condensado de Bose-Einstein é uma fase da matéria formada por bósons a uma temperatura muito próxima do zero absoluto. Nestas condições, uma grande fracção de átomos atinge o mais baixo estado quântico, e nestas condições os efeitos quânticos podem ser observados à escala macroscópica. A existência deste estado da matéria como consequência da mecânica quântica foi inicialmente prevista por Albert Einstein em 1925, no seguimento do trabalho efetuado por Satyendra Nath Bose. O primeiro condensado deste tipo foi produzido setenta anos mais tarde por Eric Cornell e Carl Wieman em 1995, na Universidade do Colorado em Boulder, usando um gás de átomos de rubídio arrefecido a 170 nK (nano Kelvin).[1]

Descrição detalhada do gráfico de distribuição de velocidades[editar | editar código-fonte]
As cores artificiais representam o número de átomos em cada velocidade, indicando o vermelho menos átomos e o branco mais átomos. As áreas em que aparecem branco e azul claro são velocidades menores. Esquerda: Logo antes do aparecimento do condensado de Bose-Einstein. Centro: No instante do aparecimento do condensado. Direita: após a rápida evaporação, deixando amostras puras do condensado. O pico não é infinitamente estreito devido ao Princípio da Incerteza de Heisenberg: quando um átomo é retido numa região específica do espaço a sua distribuição de velocidade possui necessariamente uma certa largura mínima.
Introdução[editar | editar código-fonte]
Os condensados de Bose-Einstein são fluidos de temperaturas baixas com propriedades não totalmente compreendidas, como fluir espontaneamente para fora do seu recipiente. Este efeito é uma consequência da mecânica quântica, que postula que qualquer sistema só pode adquirir energia em quantidades discretas. Se um sistema está a uma temperatura tão baixa que esteja no seu estado de energia mínima, não é possível reduzir a sua energia, nem sequer por fricção. Assim sendo, sem fricção, o fluido facilmente supera a gravidade devido às forças de adesão entre o fluido e a parede do seu recipiente e tomará a posição mais favorável, ou seja, a toda a volta do recipiente.
Teoria[editar | editar código-fonte]
O abrandamento de átomos por meio de arrefecimento produz um estado quântico único conhecido como condensado de Bose ou condensado de Bose-Einstein. Este fenômeno foi teorizado nos anos 20 por Albert Einstein, ao generalizar o trabalho de Satyendra Nath Bose sobre a mecânica estatística dos Fótons (sem massa) para átomos (com massa). (O manuscrito de Einstein, que se pensava estar perdido, foi encontrado em 2005 numa biblioteca da Universidade de Leiden). O resultado do trabalho de Bose e Einstein é o conceito de gás de Bose, governado pela estatística de Bose-Einstein que descreve a distribuição estatística de partículas idênticas de spin inteiro, conhecidas hoje em dia como Bósons. As partículas bosónicas, que incluem o Fóton e átomos como o He-4, podem partilhar estados quânticos umas com as outras. Einstein especulou que arrefecendo os átomos bosónicos até temperaturas muito baixas os faria colapsar (ou "condensar") para o mais baixo estado quântico acessível, resultando numa nova forma de matéria.
Esta transição ocorre abaixo de uma temperatura crítica, a qual, para um gás tridimensional uniforme consistindo em partículas não-interactivas e sem graus internos de liberdade aparentes, é dada por:
- / G* = = [ ] ω , , .=
onde:
é a temperatura crítica, a densidade da partícula, a massa por bóson, a constante de Planck, a constante de Boltzmann, e a função zeta de Riemann; ≈ 2,6124. O bóson (português brasileiro) ou bosão (português europeu) é uma partícula que possui spin inteiro (em unidades de ) e obedece à estatística de Bose-Einstein.[1] Ele tem este nome em homenagem ao físico indiano Satyendra Nath Bose.[2] Entre os exemplos de bósons estão as partículas elementares, como o fóton, o glúon, o bóson de Higgs, e partículas compostas, como mésons e núcleos atômicos estáveis, como o hélio-4.
Motivação[editar | editar código-fonte]
As partículas microscópicas exibem propriedades que, no começo do século XX, motivaram o surgimento da mecânica quântica. O problema da identidade das partículas, antes tido como ponto pacífico pela mecânica clássica, toma feição inteiramente nova.
Duas partículas que podem ser distinguidas pela posição na mecânica clássica já não o podem ser pela mecânica quântica. Isso decorre pela imprecisão inerente às medidas efetuadas sobre os observáveis, que correspondem, grosso modo, à noção de propriedade da mecânica clássica.
A imprecisão da mecânica quântica decorre do princípio da incerteza de Heisenberg, que estipula restrição para a medição simultânea de propriedades incompatíveis, que são aquelas relacionadas pelo princípio da incerteza.
Estatística quântica[editar | editar código-fonte]
Com o advento da mecânica quântica as noções de distinguibilidade das partículas subatômicas e da ocupação de estados de energia sofreu sérias reformulações.
No começo do século XX, Boltzmann havia chegado à forma correta da distribuição do número de partículas em função do nível de energia. Mas isso no âmbito da mecânica clássica.
Contudo, principalmente com o surgimento da moderna teoria quântica, o conceito de trajetória se torna seriamente prejudicado, quando não totalmente desnecessário e contraditório.
Uma trajetória implica o deslocamento, no espaço (e é claro, no tempo) de uma partícula, idealizada como um ponto matemático. Nesse sentido, uma trajetória física corresponderia, na matemática, a uma curva suave e diferenciável, completamente contínua em todos os seus pontos.
Porém, mesmo no trabalho de Einstein sobre o movimento browniano em 1905 (publicado juntamente com outros três trabalhos: sobre o efeito fotoelétrico, sobre o calor específico dos sólidos e sobre a relatividade), esse cientista postulou trajetórias em zig-zag, descontínuas em inúmeros (para não dizer infinitos) pontos, para as moléculas e átomos, assim como também as partículas movidas, fossem elas partículas de pó, pólen, dentre outras. Assim, ainda no cenário da física clássica, as trajetórias suaves já não eram ponto pacífico.
Com o entendimento trazido à luz pela interpretação do princípio da incerteza de Heisenberg, e pela interpretação estatística da função de onda dada por Max Born foi totalmente por terra a noção de que a partícula tinha trajetória definida.
Assim sendo, não se podem distinguir partículas cujas características sejam idênticas se se aproximam muito uma da outra, porque então não se pode identificá-las pela trajetória, já que para pontos muitos próximos, dependendo da velocidade, os pontos já não são discerníveis. A relação matemática que rege essa indeterminação fundamental é a relação da incerteza de Heisenberg:
[Xk,Pl] = i / G* = = [ ] ω , , .= onde Xk representa o operador posição e Pl representa o operador de momento linear
Dentro desse entendimento, a distribuição de Boltzmann não é mais válida, senão como aproximação. Verificou-se que as distribuições válidas para partículas com carácter manifestamente quântico, são as seguintes:
A primeira é válida para partículas de spin semi-inteiro ( 1/2, 3/2, 5/2...),em unidades de , ou seja, para os férmions, ao passo que a segunda é a distribuição válida para partículas de spin inteiro (0,1,2,3...), ou seja, para os bósons, assunto deste artigo.
Pode-se explicar qualitativa e sucintamente, de forma simplificada, que os bósons podem ter as suas funções de onda explicitadas separadamente em coordenadas espaciais e nas coordenadas de spin. A função de onda para os bósons são funções simétricas perante a inversão simultânea das coordenadas espaciais e das coordenadas de spin.
Um férmion (português brasileiro) ou fermião (português europeu) é uma partícula que tem spin semi-inteiro (em unidades de ) e obedece à estatística de Fermi-Dirac.[1] Recebem este nome em homenagem ao físico Enrico Fermi. Todas as partículas elementares ou são férmions ou bósons.
Em decorrência do princípio de exclusão de Pauli, dois férmions de spin 1/2 quaisquer não podem ter simultaneamente todos os números quânticos idênticos, aí incluídos os valores das projeções ms do spin. Em decorrência disso e do fato de que para uma partícula com spin = s há 2s + 1 orientações possíveis de spin, o número máximo de ocupação de um férmion com spin 1/2 em um estado é 1 (2 se abstrair o spin) ms = +1/2 e ms = - 1/2.[2]
Exemplos de férmions:
Motivação[editar | editar código-fonte]
As partículas microscópicas exibem propriedades que, no começo do século XX, motivaram o surgimento da Mecânica quântica. O problema da identidade das partículas, antes tido como ponto pacífico pela Mecânica clássica, toma feição inteiramente nova.
Duas partículas que podem ser distinguidas pela posição na mecânica clássica já não o podem ser pela mecânica quântica. Isso decorre pela imprecisão inerente às medidas efetuadas sobre os observáveis, que correspondem, grosso modo, à noção de propriedade da mecânica clássica.
A imprecisão da mecânica quântica decorre do Princípio da incerteza de Heisenberg, que estipula restrição para a medição simultânea de propriedades incompatíveis, que são aquelas relacionadas pela relação de incerteza de Heisenberg.
Estatística quântica[editar | editar código-fonte]
Com o advento da Mecânica quântica as noções de distinção das partículas subatômicas e da ocupação de estados de energia sofreram sérias reformulações.
No começo do século XX, Boltzmann havia chegado a forma correta da distribuição do número de partículas em função do nível de energia. Mas isso no âmbito da mecânica clássica.
Contudo, principalmente com o surgimento da moderna teoria quântica, o conceito de trajetória se torna seriamente prejudicado, quando não totalmente desnecessário e contraditório.
Uma trajetória implica o deslocamento de uma partícula (idealizada como um ponto matemático) no espaço e no tempo. Nesse sentido, uma trajetória física corresponderia, na matemática, a uma curva suave e diferenciável, completamente contínua em todos os seus pontos.
Porém, mesmo no trabalho de Einstein sobre o movimento browniano em 1905 (publicado juntamente com outros três trabalhos, a saber: o efeito fotoelétrico, o calor específico dos sólidos e a relatividade); esse cientista postulou trajetórias em zig-zag, descontínuas em inúmeros (para não dizer infinitos) pontos para as moléculas e átomos, assim como também as partículas movidas, fossem elas de pó, pólen, dentre outras. Assim, ainda no cenário da física clássica, as trajetórias suaves já eram admissíveis.
Com o entendimento trazido à luz pela interpretação do princípio da incerteza de Heisenberg e pela interpretação estatística da Função de onda dada por Max Born foi totalmente por terra a noção de que a partícula tinha trajetória definida.
Assim sendo, não se podem distinguir partículas cujas características sejam idênticas se se aproximam muito uma da outra, porque então não se pode identifica-las pela trajetória, já que para pontos muitos próximos, dependendo da velocidade, os pontos já não são discerníveis. A relação matemática que rege essa indeterminação fundamental é a relação da incerteza de Heisenberg:
[Xk,Pl] = i / G* = = [ ] ω , , .= onde Xk representa o operador posição, Pl representa o operador Momento linear e o operador identidade.
Dentro desse entendimento, a distribuição de Boltzmann não é mais válida, senão como aproximação. Verificou-se que as distribuições válidas para partículas com carácter manifestamente quântico, são as seguintes:
A primeira é válida para partículas de Spin semi-inteiro( 1/2, 3/2, 5/2...),em unidades de , ou seja, para os férmions, ao passo que a segunda é a distribuição válida para partículas de spin inteiro (0,1,2,3...), ou seja, para os bósons.
Pode-se explicar qualitativa e sucintamente, de forma simplificada, que para os férmions as funções de onda são funções anti-simétricas, ou seja, trocam de sinal perante a troca simultânea das coordenadas espaciais e das coordenadas de spin entre dois férmions.
Comentários
Postar um comentário